diggrtoolbox Documentation

F. Ramisch and P. Muhleder

May 22, 2023

Contents:

1 Getting started 3
L1 diggrtoolboX o o e e e e e e e e e e e 3
1.2 Installation L e e e e e e e e e 4
1.3 Examples oo e e e e e e e e 4
1.4 diggrtoolboX e e e e 7
2 Authors, Copyright, License 11

diggrtoolbox Documentation

diggrtoolbox is a collection of various loosely coupled or completely independent tools, which were developed during
the first phase of the diggr (databased infrastructure for global game culture research) project at the university library
in Leipzig.

The tools are mostly small helpers meant to ease the handling of data and data structures we encountered during this
research project.

Note: The main development paradigm for this library was and is: Providing tools, which have few to no addi-
tional/external dependencies, especially no requirement for any services to be run in the network, e.g. elasticsearch,
CouchDB, etc. It is a toolbox made for Digital Humanities Researchers who do not have access to a huge technical
infrastructure.

Contents: 1

diggrtoolbox Documentation

2 Contents:

CHAPTER 1

Getting started

1.1 diggrtoolbox

This collection of tools was developed in the Databased infrastructure for global game culture reasearch (diggr) group
at the University Library in Leipzig. Being a collection means, that these helpers are organised into individual pack-
ages. Each package is built for one purpose, but the functionality and purpose across functionality may be differ.

For the full documentation have a look at https://diggrtoolbox.readthedocs.io

1.1.1 Requirements

This Software was tested with Python 3.5 and 3.6. There are no further requirements. diggrtoolboxes uses only
packages and modules which are shipped with Python. Only exception: If you plan development on diggrtoolbox you
need to have pyfest to run the tests.

1.1.2 Components

* deepget: A small helper easing access to data in deeply nested dicts/list, by separating the definition of the route
and actual call.

e ZipSingleAccess: Allows access to a JSON document in a ZIP-File.

* ZipMultiAccess: Allows access to a JSON document in a ZIP-File, where some parts of the original JSON
document are separated into separate json documents. This eases the handling of large files, which otherwise
would clog the RAM.

e TreeExplore: Class to help exploring deeply nested dicts/lists/both. It provides various helpful display and
search functions. It can help exploring raw dumps aquired from APIs on the internet. The search function
returns a route-object which can be fed to deepget, in order to retrieve specific datasets.

e treehash: Allows comparison of complex data structures by hashing it. It allows to compare deeply nested
dicts/lists/both without having to compare its individual components.

https://diggrtoolbox.readthedocs.io

diggrtoolbox Documentation

1.1.3 Authors

* Florian Rdmisch <raemisch @ub.uni-leipzig.de>

* Peter Miihleder <muehleder @ub.saw-leipzig.de>

1.1.4 License

e MIT License.

1.1.5 Copyright

* Universititsbibliothek Leipzig, 2018.

1.2 Installation

It is recommended to use diggrtoolbox in a virtualenvironment such as virtualenv. Please refer to the documentation
of virtualenv and/or virtualenvwrapper or pipenv to see how to set it up.

The latest version of diggrtoolbox can be obtained from github.

1.2.1 Install the latest version

You can install the latest version via pip:

pip install git+https://github.com/diggr/diggrtoolbox

1.2.2 Development

If you plan to develop diggrtoolbox it is recommended to clone the github repository:

’qit clone git@github.com/diggr/diggrtoolbox

Installation is performed using pip, but in editable mode, i.e. such that changes in the source take effect immediately:

’pip install -e ./diggrtoolbox

1.3 Examples

To demonstrate possible applications of the tools of the toolbox, this page will contain example use cases.

1.3.1 UnifiedAPI / DiggrAPI

This is the latest addition to the toolbox. It allows the user to have an easier access to the unified API without having
to memorize addresses. You can set filters, select datasets, etc.

The following will create an instance, and select the dataset mobygames.

4 Chapter 1. Getting started

mailto:raemisch@ub.uni-leipzig.de
mailto:muehleder@ub.saw-leipzig.de
https://opensource.org/licenses/MIT
https://ub.uni-leipzig.de
https://virtualenv.pypa.io/en/stable/
https://virtualenvwrapper.readthedocs.io/en/latest/
https://docs.pipenv.org/
https://github.com/diggr/diggrtoolbox

diggrtoolbox Documentation

>>> from diggrtoolbox.unified api import DiggrAPI
>>> d = DiggrAPI ("http://localhost:6660) .dataset ("mobygames")

If you now get() this, you will get a list of all ids.

>>> ids = d.get ()

Let’s suppose you are interested in links. Apply a filter, and then iterate over all ids, and run your process

>>> d.filter("links")

>>> for id_ in ids:

>>> data = d.item(id_) .get ()
>>> # further processing

To clean up the code a bit, you can get the result immediately after setting an item id (or slug), by initializing DiggrAPI
with get_on_item=True. If the “magic” (i.e. filtering the content of the request instead of returning the raw response)
does not fit your needs, you can also set raw=True.

>>> d = DiggrAPI ("http://localhost:6660", get_on_item=True, raw=True)
>>> d.dataset ("mobygames") .filter ("links")
>>> raw_data = d.item("1d_")

1.3.2 ZipSingleAccess

Imagine you have a lot of data stored in one JSON-file. Often these files can be compressed to take a lot less space on
your harddrive. When you want to work with the content of these files, of course you don’t want to upack them first:

>>> import diggrtoolbox as dt

>>> z = ZipSingleAccess ("data/compressed_file.zip")
>>> j = z.Jjson()

>>> isinstance(j, dict)

True

>>> print (j.keys())

dict_keys(['id', 'data', 'raw'])

1.3.3 ZipMultiAccess

Sometimes the data, you want so load from a file, which is bigger than the RAM you have. This is a problem, as it
makes it impossible to work with files of this size without some tricks.

In the natural sciences this problem is tackled by using HDF5, a special file format, allowing to partially load the file,
and only serve the parts needed for the next computation step. Unfortunately, this file is not quite made to store tree
like structures like nested dicts/lists.

With ZipMultiAccess we make the first step into this direction. You save subtrees of your data in a subfolder, and then
load it from the ZIP when you need it:

>>> import diggrtoolbox as dt

>>> z = ZipMultiAccess ("data/compressed_files.zip")
>>> j = z.Jjson()

>>> isinstance(j, list)

True

>>> len (j)

38386

(continues on next page)

1.3. Examples 5

diggrtoolbox Documentation

(continued from previous page)

>>> isinstance(j[0], dict)

True

>>> print (J[0] .keys())

dict_keys(['id', 'data', 'raw', 'matches'])
>>> print (§J[0] ['matches'])

{'n_matches': 3}

>>> ml = z.get (j[0]['"id"'])
>>> isinstance(m, list)
True

>>> len (m)

3

In the above example we have a list of 38386 which we matched with other games from another database. The match
data is huge, so putting all data into one file resulted in a big freeze, as the amount of memory required to hold put all
information into one Python object was larger, than the amount the machine had available.

All match data was put into separate files, in a subfolder matches and then referenced with the id in the filename. The
name of the subfolder can be chosen arbitrarily.

There are multiple ways of accessing the additional files:

>>> z[J[0]["id"]] == z.get(J[0]1['id"'])
True

1.3.4 TreeExplore

The TreeExplore class provides easy access to nested dicts/list or combinations of both:

>>> import diggrtoolbox as dt

>>> test_dict = {'id' : 123456789,

>>> 'data' : {'name': 'diggr project',

>>> 'city': 'Leipzig',

>>> 'field': 'Video Game Culture'},

>>> 'references':[{'url': 'http://diggr.link',

>>> 'name': 'diggr website'},

>>> {'url': 'http://ub.uni-leipzig.de',
>>> 'name': 'UBL website'}]}

>>> tree = dt.TreeExplore (test_dict)

>>> results = tree.search("leipzig")

Search-Term: leipzig

Route: references, 1, url,

Embedding: 'http://ub.uni-leipzig.de'
>>> print (results)

[{'embedding': 'http://ub.uni-leipzig.de',
'route': ['references', 1, 'url'],
'unique_in_embedding': False,

'term': 'leipzig'}]

1.3.5 treehash

Imagine you have a datastructure, which you use as a reference at some point in your workflow. It is provided as a
JSON-file at some point online, e.g. the diggr platform mapping for the MediaartsDB.

This file is updated frequently. You write a program to check if the contents of the file change, compared with the
version you have locally:

6 Chapter 1. Getting started

https://diggr.github.io/platform_mapping/mediaartdb.json

diggrtoolbox Documentation

import requests
import diggrtoolbox as dt

URL = 'https://diggr.github.io/platform_mapping/mediaartdb. json'

If the hashes turn out to be different, and you’d like to investigate the differences in more detail, we recommend using
a diff-tool like dictdiffer.

1.3.6 deepget

The deepget function can be used easy with the results object of the TreeExplore search function, as demonstrated
below:

>>> import diggrtoolbox as dt

>>> test_dict = {'id' : 123456789,
'data' : {'name' : 'diggr project',
'city' : 'Leipzig',
'field': 'Video Game Culture'},
'references': [{'url' : 'http://diggr.link',
'name' : 'diggr website'},
{'url' : 'http://ub.uni-leipzig.de',
'name' : 'UBL website'}]}
>>> tree = dt.TreeExplore (test_dict)

>>> results = tree.quiet_search("leipzig")
>>> for result in results:

print (dt.deepget (test_dict, result['route'l]))
http://ub.uni-leipzig.de

The TreeExplore class itself also provides an easy method for accessing nested objects. Either a key, index, result dict
or route can be used:

>>> print (tree[result])
http://ub.uni-leipzig.de

>>> print (tree[result['route']])
http://ub.uni-leipzig.de

>>> print (tree['references'][1]['url'])
http://ub.uni-leipzig.de

1.4 diggrtoolbox

1.4.1 diggrtoolbox package

Subpackages

diggrtoolbox.configgr package
Submodules

diggrtoolbox.configgr.configgr module

1.4. diggrtoolbox 7

https://github.com/inveniosoftware/dictdiffer

diggrtoolbox Documentation

Module contents

diggrtoolbox.deepget package
Submodules
diggrtoolbox.deepget.deepget module
Module contents

diggrtoolbox.linking package
Subpackages
diggrtoolbox.linking.resources package
Module contents

Submodules

diggrtoolbox.linking.config module
diggrtoolbox.linking.helpers module
diggrtoolbox.linking.link module
diggrtoolbox.linking.rules module
Module contents
diggrtoolbox.platform_mapping package
Submodules
diggrtoolbox.platform_mapping.platform_mapping module
Module contents

diggrtoolbox.rdfutils package
Submodules
diggrtoolbox.rdfutils.jsonld_loader module

Module contents

8 Chapter 1. Getting started

diggrtoolbox Documentation

diggrtoolbox.schemaload package
Submodules
diggrtoolbox.schemaload.schemaload module
Module contents

diggrtoolbox.standardize package
Submodules
diggrtoolbox.standardize.standardize module
Module contents

diggrtoolbox.treeexplore package
Submodules
diggrtoolbox.treeexplore.treeexplore module
diggrtoolbox.treeexplore.treehash module
Module contents

diggrtoolbox.unified_api package
Submodules
diggrtoolbox.unified_api.diggr_api module
Module contents

diggrtoolbox.zipaccess package
Submodules
diggrtoolbox.zipaccess.zip_access module
Module contents

Module contents

¢ genindex

e search

1.4. diggrtoolbox 9

diggrtoolbox Documentation

10 Chapter 1. Getting started

CHAPTER 2

Authors, Copyright, License

diggrtoolbox was developed by F. Rimisch <raemisch@ub.uni-leipzig.de> and P. Miihleder <muehleder @ub.uni-

leipzig.de> in the diggr project. It is licensed under MIT License. Copyright is by Universititsbibliothek Leipzig,
2018.

11

mailto:raemisch@ub.uni-leipzig.de
mailto:muehleder@ub.uni-leipzig.de
mailto:muehleder@ub.uni-leipzig.de
https://diggr.link
https://opensource.org/licenses/MIT
https://ub.uni-leipzig.de

	Getting started
	diggrtoolbox
	Installation
	Examples
	diggrtoolbox

	Authors, Copyright, License

